Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A new configuration of the one-dimensional anionic Mo/S/Ag polymer, {[Ce(dmac)₇MeOH][Mo₃S₁₂Ag₃]}_n (dmac is N,N-dimethylacetamide)

Yuan Cao, Jin-Fang Zhang and Chi Zhang*

Institute of Molecular Engineering and Advanced Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, Jiangsu, People's Republic of China Correspondence e-mail: chizhang@mail.njust.edu.cn

Received 23 May 2007; accepted 4 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.014 Å; disorder in main residue; R factor = 0.054; wR factor = 0.142; data-to-parameter ratio = 19.1.

The self-assembly of tetrathiomolybdate, silver iodide and cerium nitrate in N,N-dimethylacetamide (dmac) and methanol resulted in a one-dimensional anionic Mo/S/Ag polymer, catena-poly[heptakis(N,N-dimethylacetamide- κO)-(methanol- κO)cerium(III) $[di-\mu_3-sulfido-octa-\mu_2-sulfido$ disulfidotrisilver(I)trimolybdenum(VI)]], $\{[Ce(C_4H_9NO)_7 (CH_4O)][Mo_3S_{12}Ag_3]]_n$. The polymeric anion $\{[Mo_3S_{12} Ag_3]_n$ ³ⁿ⁻ assumes a new configuration of a saw-tooth chain with the lengths of the sides in a 1:2 ratio. Such a configuration is intermediate between the polymeric anions in two reported compounds, viz. $\{[Ca(DMF)_6][Mo_2S_8Ag_2]\}_n$ and $\{[Ca (DMSO)_6]_2[W_4S_{16}Ag_4]_n$ (DMF is dimethylformamide and DMSO is dimethyl sulfoxide). The metal atoms in the chain are nearly coplanar. The central Ce in the solvent-coordinated cation has distorted square-antiprismatic coordination. Of the seven N,N-dimethylacetamide (dmac) molecules present, one is found to be disordered over two sites, with occupancy factors of 0.63 and 0.37. The overall structure can be viewed as consisting of staggered layers parallel to (010), which are formed by anionic chains propagating along the a axis and cations distributed in the spaces between the anionic chains. No notable interactions are found between cations and polymeric anions except for electrostatic attractions.

Related literature

The two most relevant known analogs of the title compound are { $[Ca(DMF)_6][Mo_2S_8Ag_2]$ }_n (Yu *et al.*, 1998) and { $[Ca-(DMSO)_6]_2[W_4S_{16}Ag_4]$ }_n (Huang *et al.*, 1996) (DMF is dimethylformamide and DMSO is dimethyl sulfoxide), both also having saw-tooth-shaped polymeric anions but of different configurations, with the lengths of the sides in the ratio 1:1 and 1:3, respectively. For related literature, see: Niu et al. (2004); Zhang et al. (2007).

 $\beta = 98.01 \ (3)^{\circ}$

 $\gamma = 101.00 (3)^{\circ}$

Z = 2

 $V = 2999.3 (12) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 2.77 \text{ mm}^{-1}$

 $0.25 \times 0.20 \times 0.18 \text{ mm}$

T = 293 (2) K

Experimental

Crystal data

$[Ce(C_4H_9NO)_7(CH_4O)]$ -
$[Mo_3Ag_3S_{12}]$
$M_r = 1777.28$
Triclinic, $P\overline{1}$
a = 12.326 (3) Å
b = 15.089 (3) Å
c = 16.747 (3) Å
$\alpha = 96.10 \ (3)^{\circ}$

Data collection

Enraf-Nonius CAD-4	11741 independent reflections
diffractometer	8829 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.045$
(XCAD4; Harms & Wocadlo, 1995)	3 standard reflections every 550 reflections
$T_{\min} = 0.494, \ T_{\max} = 0.610$	intensity decay: none
12323 measured reflections	
Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.142$ S = 1.0011741 reflections 616 parameters

9 restraints H-atom parameters constrained $\Delta \rho_{max} = 1.30$ e Å⁻³ $\Delta \rho_{min} = -0.87$ e Å⁻³

Data collection: *CAD-4-PC Software* (Enraf–Nonius, 1992); cell refinement: *SET4* and *CELDIM* in *CAD-4-PC Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Financial support from the National Natural Science Foundation of China (No. 50472048) and the Program for New Century Excellent Talents in Universities (NCET-05-0499) is acknowledged. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2044).

References

Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). *XCAD4*. University of Marburg, Germany. Huang, Q., Wu, X. T. & Lu, J. X. (1996). *Inorg. Chem.* **35**, 7445–7447.

- Niu, Y. Y., Zheng, H. G., Hou, H. W. & Xin, X. Q. (2004). Coord. Chem. Rev. 248, 169–183.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Yu, H., Zhang, W. J., Wu, X. T., Sheng, T. L., Wang, Q. M. & Lin, P. (1998). Angew. Chem. Int. Ed. 37, 2520–2521.

Zhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111-141.

Acta Cryst. (2007). E63, m1987-m1988 [doi:10.1107/S1600536807027389]

A new configuration of the one-dimensional anionic Mo/S/Ag polymer, {[Ce(dmac)₇MeOH][Mo₃S₁₂Ag₃]}_n (dmac is N,N-dimethylacetamide)

Y. Cao, J.-F. Zhang and C. Zhang

Comment

Heterothiometallic Mo(W)/S/Cu(Ag) polymers are of considerable interests for their structural richness (Niu *et al.*, 2004) and promising applications as third-order nonlinear optic (NLO) materials (Zhang *et al.*, 2007). The title compound represents a new configuration of 1-D Mo(W)/S/Ag polymers.

The asymmetric unit of the title compound comprises one solvent-coordinated cation $[Ce(dmac)_7MeOH]^{3+}$ (dmac = *N,N*-dimethylacetamide) and a repeat unit of the polymeric anion $[Mo_3S_{12}Ag_3]^{3-}$ (Fig. 1). The central Ce in the solvent-coordinated cation has distorted square antiprismatic coordination. Of the seven dmac molecules present, one is found to be disordered. The two components of the disordered dmac have occupancies of 0.63 and 0.37 (3). The Ce—O bond lengths between Ce and seven O atoms from dmac are similar but much shorter than that between Ce and O from methanol. The repeat unit in the anionic chains consists of two butterfly-shaped and one linear $[MoS_4Ag_2]$ sub-units joined together by shared silver atoms. The geometry of the sub-units is very similar to those in previous reported 1-D Mo(W)/S/Ag polymers, $\{[Ca(dmso)_6]_2[W_4S_{16}Ag_4]\}_n$ (Yu *et al.*, 1998) and $\{[Ca(dmf)_6][Mo_2S_8Ag_2]\}_n$ (Huang *et al.*, 1996) but they are differently arranged leading to different chain configurations(Fig. 2). The anionic chains in the title compound are saw-tooth-shaped with the lengths of the sides in the ratio 1:2, as against the ratios of 1:1 and 1:3 observed in the aforementioned reported compounds. All metals in the anionic chain of the title compound are nearly coplanar. The overall structure can be viewed as consisting of staggered layers parallel to (010), which are formed by anionic chains propagating along the *a* axis and cations distributed in the spaces of the anionic chains (Fig. 3).

Experimental

1 mmol AgI was added to a solution of $[NH_4]_2MoS_4$ (1 mmol in 10 mL dmac) with thorough stir for 10 minutes. The solution underwent an additional stir for one minute after 0.5 mmol Ce(NO₃)₃6H₂O was added. After filtration the black-red filtrate was carefully laid on the surface with 10 ml CH₃OH. Black-red prism crystals were obtained after two weeks. Yield: 0.377 g in pure form, 63.6% (based on Mo). Analysis calculated for C₂₉H₆₇Ag₃CeMo₃N₇O₈S₁₂: C 19.57, H 4.07, N 5.51%; found: C 19.32, H 3.86, N 5.72%. IR: v, cm⁻¹ 1604vs (C=O), 495*m*, 482s h (Mo–S_t), 451 s (Mo- μ_2 -S) and 420s h (Mo- μ_3 -S).

Refinement

One coordinated dmac molecule is disordered, with two distinct positions with partial occupancies except for the O atoms. The occupancy for the disordered parts was refined to be 0.63:0.37 (3). The minor component was restrained to obtain reasonable geometry. These disordered atoms were refined with anisotropic displacement parameters. H atoms were positioned geometrically and refined with a riding model, with $U_{iso} = 1.5U_{eq}$ for methyl H atoms. The –OH H atom of methanol cannot be located in difference Fourier maps so it is not included in the crystallographic data. **Figures**

Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted.

Fig. 2. Different configurations of 1-D saw-tooth-shaped Mo(W)/S/Ag polymers.

Fig. 3. The packing of the title compound, viewed down the b axis, only one layer of molecules shown for clarity. All H atoms have been omitted.

catena-poly[heptakis(N,N'-dimethylacetamide- κO)(methanol- κO)cerium(III) [di- μ_3 -sulfido-octa- μ_2 -sulfidodisulfidotrisilver(I)trimolybdenum(IV)]]

Crystal data	
[Ce(C ₄ H ₉ NO)7(CH ₄ O)][Mo ₃ Ag ₃ S ₁₂]	Z=2
$M_r = 1777.28$	$F_{000} = 1740$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.968 { m Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 12.326 (3) Å	Cell parameters from 12323 reflections
b = 15.089 (3) Å	$\theta = 1.2 - 26.0^{\circ}$
c = 16.747 (3) Å	$\mu = 2.77 \text{ mm}^{-1}$
$\alpha = 96.10 \ (3)^{\circ}$	T = 293 (2) K
$\beta = 98.01 \ (3)^{\circ}$	Prism, black-red
$\gamma = 101.00 \ (3)^{\circ}$	$0.25\times0.20\times0.18~mm$
$V = 2999.3 (12) \text{ Å}^3$	
Data collection	
Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.045$
Radiation source: sealed tube	$\theta_{\text{max}} = 26.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.2^{\circ}$
T = 293(2) K	$h = 0 \rightarrow 15$
ω scans	$k = -18 \rightarrow 18$
Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995)	<i>l</i> = −20→20

$T_{\min} = 0.494, \ T_{\max} = 0.610$	3 standard reflections
12323 measured reflections	every . reflections
11741 independent reflections	intensity decay: none
8829 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H-atom parameters constrained
$wR(F^2) = 0.142$	$w = 1/[\sigma^2(F_o^2) + (0.065P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$
11741 reflections	$\Delta \rho_{max} = 1.30 \text{ e} \text{ Å}^{-3}$
616 parameters	$\Delta \rho_{min} = -0.87 \text{ e } \text{\AA}^{-3}$
9 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

										2	
Fractional	atomic	coordinates	and	isotropic	or	envivalent	isotronic	displacement	narameters	$(Å^2)$)
1 ruciionui	uiomic	coordinates	unu	isonopie	01	cquivaicni	isonopie	uspiacemeni	parameters	(11)	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Ce1	0.25569 (4)	0.25542 (3)	0.26384 (3)	0.03690 (12)	
Mo3	-0.21526 (6)	0.30112 (5)	0.57263 (4)	0.03952 (16)	
Mo1	0.66703 (5)	0.23209 (5)	0.89485 (4)	0.03867 (16)	
Mo2	0.22670 (6)	0.25434 (5)	0.71991 (4)	0.03925 (16)	
Ag2	0.01230 (5)	0.27838 (4)	0.63464 (4)	0.04257 (15)	
Ag1	0.44028 (5)	0.23634 (5)	0.81193 (4)	0.04697 (16)	
Ag3	-0.26820 (6)	0.27206 (4)	0.73640 (4)	0.04776 (16)	
S7	0.16012 (18)	0.20197 (16)	0.59142 (13)	0.0483 (5)	
S11	-0.31129 (18)	0.38494 (15)	0.64026 (13)	0.0456 (4)	
S10	-0.18108 (19)	0.18235 (15)	0.63386 (15)	0.0521 (5)	
S6	0.38461 (19)	0.35212 (15)	0.72524 (15)	0.0542 (5)	
S5	0.24748 (19)	0.13581 (15)	0.78314 (16)	0.0533 (5)	
S4	0.58495 (19)	0.14711 (14)	0.77510 (14)	0.0503 (5)	
S12	-0.3167 (2)	0.24885 (18)	0.45738 (14)	0.0579 (6)	
S3	0.5513 (2)	0.30032 (17)	0.95274 (14)	0.0543 (5)	
S8	0.1154 (2)	0.32516 (16)	0.78014 (14)	0.0532 (5)	
S9	-0.0618 (2)	0.39019 (16)	0.55104 (15)	0.0543 (5)	
S2	0.7228 (2)	0.14308 (16)	0.97578 (15)	0.0552 (5)	
S1	0.8153 (2)	0.33502 (18)	0.88300 (15)	0.0600 (6)	
01	0.2916 (6)	0.3164 (4)	0.1362 (4)	0.0565 (15)	
N1	0.2963 (10)	0.3762 (10)	0.0245 (10)	0.053 (4)	0.63 (3)
C1	0.3137 (15)	0.3835 (15)	0.1020 (13)	0.062 (5)	0.63 (3)
C11	0.373 (2)	0.4798 (16)	0.1453 (11)	0.042 (5)	0.63 (3)
H11A	0.3805	0.4802	0.2031	0.064*	0.63 (3)
H11B	0.3289	0.5231	0.1294	0.064*	0.63 (3)

H11C	0.4455	0.4958	0.1301	0.064*	0.63 (3)
C12	0.244 (2)	0.2814 (19)	-0.0182 (19)	0.055 (8)	0.63 (3)
H12A	0.2288	0.2412	0.0216	0.083*	0.63 (3)
H12B	0.2940	0.2601	-0.0509	0.083*	0.63 (3)
H12C	0.1748	0.2825	-0.0523	0.083*	0.63 (3)
C13	0.323 (2)	0.4524 (15)	-0.0244 (16)	0.051 (5)	0.63 (3)
H13A	0.3429	0.5094	0.0111	0.077*	0.63 (3)
H13B	0.2591	0.4525	-0.0641	0.077*	0.63 (3)
H13C	0.3851	0.4444	-0.0515	0.077*	0.63 (3)
N1'	0.3063 (19)	0.4207 (14)	0.0662 (14)	0.051 (7)	0.37 (3)
C1'	0.282 (2)	0.3342 (13)	0.0651 (10)	0.050 (8)	0.37 (3)
C11'	0.275 (4)	0.275 (3)	-0.016 (2)	0.044 (10)	0.37 (3)
H11D	0.2680	0.3115	-0.0592	0.066*	0.37 (3)
H11E	0.2107	0.2260	-0.0234	0.066*	0.37 (3)
H11F	0.3415	0.2511	-0.0156	0.066*	0.37 (3)
C12'	0.338 (4)	0.478 (3)	0.149 (2)	0.072 (18)	0.37 (3)
H12D	0.3259	0.4397	0.1904	0.109*	0.37 (3)
H12E	0.2921	0.5228	0.1521	0.109*	0.37 (3)
H12F	0.4152	0.5081	0.1568	0.109*	0.37 (3)
C13'	0.303 (4)	0.469 (3)	-0.0072 (18)	0.056 (12)	0.37 (3)
H13D	0.3256	0.5339	0.0096	0.084*	0.37 (3)
H13E	0.2285	0.4553	-0.0374	0.084*	0.37 (3)
H13F	0.3536	0.4501	-0.0410	0.084*	0.37 (3)
02	0.3846 (5)	0.1674 (4)	0.2114 (4)	0.0525 (15)	
N2	0.5164 (6)	0.0950 (5)	0.1864 (5)	0.0509 (17)	
C2	0.4278 (7)	0.1245 (6)	0.1617 (5)	0.049 (2)	
C21	0.3960 (7)	0.1166 (7)	0.0700 (6)	0.055 (2)	
H21A	0.3323	0.1436	0.0572	0.083*	
H21B	0.3777	0.0535	0.0470	0.083*	
H21C	0.4578	0.1478	0.0477	0.083*	
C22	0.5481 (9)	0.1043 (7)	0.2779 (6)	0.069 (3)	
H22A	0.5020	0.1396	0.3032	0.104*	
H22B	0.6254	0.1343	0.2936	0.104*	
H22C	0.5371	0.0449	0.2949	0.104*	
C23	0.5706 (8)	0.0382 (7)	0.1323 (6)	0.063 (2)	
H23A	0.5422	0.0410	0.0764	0.094*	
H23B	0.5541	-0.0239	0.1428	0.094*	
H23C	0.6502	0.0608	0.1427	0.094*	
O3	0.1029 (5)	0.3306 (5)	0.2131 (4)	0.0573 (16)	
N3	-0.0014 (7)	0.4207 (5)	0.1652 (4)	0.0559 (19)	
C3	0.0411 (8)	0.3489 (6)	0.1572 (6)	0.056 (2)	
C31	-0.0048 (8)	0.2886 (7)	0.0780 (6)	0.063 (3)	
H31A	0.0301	0.2369	0.0752	0.094*	
H31B	0.0103	0.3221	0.0337	0.094*	
H31C	-0.0843	0.2681	0.0742	0.094*	
C32	0.0317 (10)	0.4821 (7)	0.2463 (6)	0.067 (3)	
H32A	0.0839	0.4583	0.2817	0.101*	
H32B	-0.0338	0.4845	0.2708	0.101*	
H32C	0.0659	0.5423	0.2378	0.101*	

C33	-0.0857 (9)	0.4431 (8)	0.1035 (7)	0.066 (3)
H33A	-0.1028	0.3969	0.0570	0.099*
H33B	-0.0566	0.5010	0.0873	0.099*
H33C	-0.1526	0.4462	0.1261	0.099*
05	0.1308 (6)	0.1204 (4)	0.1755 (4)	0.0599 (17)
N5	0.0311 (7)	-0.0145 (5)	0.1339 (5)	0.061 (2)
C5	0.1202 (10)	0.0364 (8)	0.1709 (6)	0.069 (3)
C51	0.2056 (9)	-0.0116 (6)	0.2111 (6)	0.067 (3)
H51A	0.2697	0.0328	0.2393	0.101*
H51B	0.2284	-0.0507	0.1704	0.101*
H51C	0.1731	-0.0474	0.2492	0.101*
C52	-0.0618 (9)	0.0308 (6)	0.1024 (7)	0.060 (2)
H52A	-0.0365	0.0958	0.1136	0.090*
H52B	-0.1253	0.0126	0.1288	0.090*
H52C	-0.0830	0.0130	0.0447	0.090*
C53	0.0090 (8)	-0.1155 (7)	0.1205 (6)	0.060 (2)
H53A	0.0732	-0.1359	0.1452	0.090*
H53B	-0.0057	-0.1366	0.0631	0.090*
H53C	-0.0549	-0.1395	0.1444	0.090*
O6	0.3340 (5)	0.1890 (4)	0.3810 (4)	0.0477 (14)
N6	0.3873 (6)	0.1322 (5)	0.4908 (4)	0.0523 (18)
C6	0.3731 (8)	0.1975 (6)	0.4534 (6)	0.053 (2)
C61	0.4061 (8)	0.2932 (6)	0.5061 (6)	0.064 (3)
H61A	0.3902	0.3388	0.4730	0.096*
H61B	0.4846	0.3061	0.5278	0.096*
H61C	0.3637	0.2936	0.5501	0.096*
C62	0.3572 (9)	0.0382 (6)	0.4430 (6)	0.061 (3)
H62A	0.3241	0.0415	0.3882	0.092*
H62B	0.3048	-0.0006	0.4680	0.092*
H62C	0.4236	0.0139	0.4421	0.092*
C63	0.4383 (8)	0.1383 (7)	0.5773 (5)	0.058 (2)
H63A	0.4560	0.2008	0.6020	0.086*
H63B	0.5056	0.1147	0.5804	0.086*
H63C	0.3864	0.1032	0.6056	0.086*
O7	0.4431 (5)	0.3621 (4)	0.3000 (4)	0.0526 (15)
N7	0.6201 (7)	0.3994 (6)	0.2894 (5)	0.061 (2)
C7	0.5409 (8)	0.4003 (7)	0.3275 (6)	0.059 (2)
C71	0.5676 (9)	0.4684 (7)	0.4077 (6)	0.063 (3)
H71A	0.4996	0.4708	0.4289	0.094*
H71B	0.6005	0.5279	0.3967	0.094*
H71C	0.6191	0.4485	0.4469	0.094*
C72	0.5890 (9)	0.3481 (7)	0.2047 (6)	0.063 (3)
H72A	0.5102	0.3221	0.1941	0.094*
H72B	0.6303	0.3004	0.1999	0.094*
H72C	0.6068	0.3891	0.1661	0.094*
C73	0.7404 (8)	0.4434 (7)	0.3211 (6)	0.057 (2)
H73A	0.7463	0.4767	0.3742	0.086*
H73B	0.7678	0.4844	0.2848	0.086*
H73C	0.7842	0.3972	0.3245	0.086*

08	0.0996 (5)	0.1932 (4)	0.3294 (4)	0.0537 (15)
N8	-0.0321 (6)	0.0976 (5)	0.3725 (5)	0.0524 (18)
C8	0.0026 (9)	0.1720 (7)	0.3435 (6)	0.058 (2)
C81	-0.0862 (8)	0.2282 (6)	0.3240 (5)	0.052 (2)
H81A	-0.0531	0.2823	0.3035	0.079*
H81B	-0.1150	0.2449	0.3725	0.079*
H81C	-0.1461	0.1928	0.2837	0.079*
C82	0.0511 (8)	0.0383 (6)	0.3886 (6)	0.054 (2)
H82A	0.1198	0.0641	0.3710	0.081*
H82B	0.0215	-0.0216	0.3592	0.081*
H82C	0.0653	0.0345	0.4458	0.081*
C83	-0.1457 (9)	0.0642 (7)	0.3895 (7)	0.064 (3)
H83A	-0.1923	0.1061	0.3749	0.096*
H83B	-0.1421	0.0593	0.4465	0.096*
H83C	-0.1766	0.0054	0.3584	0.096*
O4	0.2456 (5)	0.3896 (4)	0.3731 (4)	0.0509 (14)
C4	0.1747 (8)	0.3940 (7)	0.4364 (6)	0.060 (2)
H4A	0.1950	0.4534	0.4679	0.089*
H4B	0.1854	0.3488	0.4713	0.089*
H4C	0.0976	0.3826	0.4114	0.089*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ce1	0.0382 (2)	0.0364 (2)	0.0348 (2)	0.00785 (17)	0.00085 (17)	0.00563 (16)
Mo3	0.0361 (3)	0.0395 (3)	0.0415 (4)	0.0063 (3)	0.0031 (3)	0.0064 (3)
Mo1	0.0342 (3)	0.0453 (4)	0.0355 (3)	0.0067 (3)	0.0006 (3)	0.0104 (3)
Mo2	0.0373 (3)	0.0391 (3)	0.0422 (4)	0.0133 (3)	0.0006 (3)	0.0072 (3)
Ag2	0.0357 (3)	0.0480 (3)	0.0421 (3)	0.0071 (2)	-0.0015 (2)	0.0111 (3)
Ag1	0.0406 (3)	0.0527 (4)	0.0433 (3)	0.0049 (3)	-0.0012 (3)	0.0067 (3)
Ag3	0.0602 (4)	0.0394 (3)	0.0421 (3)	0.0030 (3)	0.0119 (3)	0.0071 (3)
S7	0.0436 (11)	0.0579 (12)	0.0402 (10)	0.0112 (9)	0.0006 (9)	-0.0013 (9)
S11	0.0428 (11)	0.0491 (11)	0.0458 (11)	0.0138 (9)	0.0041 (9)	0.0068 (9)
S10	0.0461 (12)	0.0503 (12)	0.0623 (13)	0.0139 (10)	0.0130 (10)	0.0061 (10)
S6	0.0483 (12)	0.0475 (11)	0.0576 (13)	0.0021 (9)	-0.0120 (10)	0.0082 (10)
S5	0.0481 (12)	0.0448 (11)	0.0677 (14)	0.0115 (9)	0.0109 (11)	0.0062 (10)
S4	0.0487 (12)	0.0408 (10)	0.0573 (13)	0.0034 (9)	0.0056 (10)	0.0033 (9)
S12	0.0554 (13)	0.0649 (14)	0.0452 (12)	0.0118 (11)	-0.0065 (10)	-0.0078 (10)
S3	0.0498 (12)	0.0637 (14)	0.0489 (12)	0.0083 (10)	0.0146 (10)	0.0035 (10)
S8	0.0546 (13)	0.0562 (13)	0.0496 (12)	0.0159 (10)	0.0071 (10)	0.0053 (10)
S9	0.0486 (12)	0.0553 (13)	0.0605 (13)	0.0117 (10)	0.0138 (10)	0.0072 (10)
S2	0.0637 (14)	0.0487 (12)	0.0533 (12)	0.0141 (11)	0.0026 (11)	0.0116 (10)
S1	0.0501 (13)	0.0661 (14)	0.0557 (13)	-0.0089 (11)	0.0026 (10)	0.0181 (11)
01	0.062 (4)	0.051 (4)	0.053 (4)	0.007 (3)	0.006 (3)	0.005 (3)
N1	0.042 (7)	0.052 (9)	0.059 (9)	0.003 (6)	-0.005 (6)	0.009 (7)
C1	0.047 (9)	0.069 (14)	0.069 (13)	0.019 (9)	-0.001 (9)	0.009 (11)
C11	0.036 (14)	0.050 (10)	0.036 (8)	0.004 (8)	-0.008 (6)	0.009 (7)
C12	0.032 (16)	0.048 (10)	0.076 (14)	0.011 (9)	-0.018 (10)	-0.005 (8)

C13	0.053 (12)	0.047 (9)	0.052 (13)	0.011 (8)	0.005 (9)	0.000 (10)
N1'	0.043 (12)	0.050 (15)	0.044 (15)	-0.012 (10)	-0.006 (10)	-0.014 (12)
C1'	0.054 (15)	0.051 (15)	0.028 (13)	-0.014 (12)	-0.009 (10)	-0.011 (12)
C11'	0.02 (2)	0.06 (2)	0.044 (17)	0.012 (14)	0.009 (14)	0.000 (14)
C12'	0.04 (3)	0.06 (2)	0.10 (3)	-0.025 (19)	-0.004 (18)	0.001 (18)
C13'	0.06 (2)	0.08 (3)	0.026 (14)	0.029 (17)	0.002 (12)	-0.023 (14)
02	0.051 (3)	0.049 (3)	0.059 (4)	0.012 (3)	0.023 (3)	-0.005 (3)
N2	0.053 (4)	0.046 (4)	0.056 (4)	0.013 (3)	0.005 (3)	0.017 (3)
C2	0.045 (5)	0.048 (5)	0.049 (5)	-0.002 (4)	0.006 (4)	0.009 (4)
C21	0.041 (5)	0.061 (5)	0.062 (6)	0.011 (4)	-0.007 (4)	0.017 (4)
C22	0.077 (7)	0.055 (5)	0.063 (6)	0.023 (5)	-0.031 (5)	-0.008 (5)
C23	0.056 (6)	0.064 (6)	0.067 (6)	0.004 (5)	0.020 (5)	0.004 (5)
03	0.051 (4)	0.066 (4)	0.049 (3)	0.011 (3)	-0.001 (3)	-0.003 (3)
N3	0.061 (5)	0.058 (4)	0.044 (4)	0.014 (4)	-0.015 (3)	0.012 (3)
C3	0.059 (5)	0.056 (5)	0.045 (5)	0.013 (4)	-0.006 (4)	-0.007 (4)
C31	0.047 (5)	0.061 (6)	0.071 (6)	0.005 (4)	0.003 (5)	-0.013 (5)
C32	0.080(7)	0.049 (5)	0.067 (6)	0.011 (5)	-0.005 (5)	0.007 (5)
C33	0.058 (6)	0.075 (7)	0.068 (6)	0.023 (5)	0.001 (5)	0.021 (5)
05	0.060 (4)	0.052 (4)	0.058 (4)	0.007 (3)	-0.002 (3)	-0.015 (3)
N5	0.073 (5)	0.040 (4)	0.064 (5)	0.000 (4)	0.012 (4)	-0.004 (3)
C5	0.070 (7)	0.068 (7)	0.055 (6)	-0.011 (5)	-0.006 (5)	0.010 (5)
C51	0.079 (7)	0.048 (5)	0.065 (6)	-0.006 (5)	-0.010 (5)	0.027 (5)
C52	0.073 (6)	0.040 (4)	0.078 (7)	0.024 (4)	0.030 (5)	0.016 (4)
C53	0.040 (5)	0.064 (6)	0.066 (6)	-0.010 (4)	0.015 (4)	-0.009 (5)
O6	0.041 (3)	0.045 (3)	0.051 (3)	0.008 (2)	-0.017 (3)	0.011 (3)
N6	0.057 (4)	0.058 (4)	0.038 (4)	0.024 (4)	-0.014 (3)	-0.003 (3)
C6	0.049 (5)	0.043 (4)	0.064 (6)	0.012 (4)	-0.006 (4)	0.010 (4)
C61	0.057 (6)	0.046 (5)	0.079 (7)	0.005 (4)	-0.027 (5)	0.027 (5)
C62	0.074 (6)	0.043 (5)	0.056 (5)	0.001 (4)	-0.020 (5)	0.021 (4)
C63	0.050 (5)	0.069 (6)	0.049 (5)	0.010 (4)	-0.004 (4)	0.010 (4)
07	0.048 (3)	0.051 (3)	0.047 (3)	-0.013 (3)	0.009 (3)	-0.007 (3)
N7	0.053 (5)	0.062 (5)	0.062 (5)	0.005 (4)	0.003 (4)	0.007 (4)
C7	0.048 (5)	0.054 (5)	0.066 (6)	-0.003 (4)	0.003 (5)	0.007 (5)
C71	0.058 (6)	0.053 (5)	0.068 (6)	-0.001 (4)	0.003 (5)	-0.007 (5)
C72	0.064 (6)	0.056 (5)	0.055 (5)	-0.006 (5)	0.000 (5)	-0.004 (4)
C73	0.057 (5)	0.061 (5)	0.045 (5)	-0.003 (4)	0.002 (4)	0.001 (4)
08	0.050 (4)	0.062 (4)	0.051 (3)	0.010 (3)	0.018 (3)	0.010 (3)
N8	0.046 (4)	0.065 (5)	0.049 (4)	0.019 (4)	0.010 (3)	0.008 (4)
C8	0.063 (6)	0.054 (5)	0.058 (5)	0.013 (5)	0.003 (5)	0.012 (4)
C81	0.061 (5)	0.044 (5)	0.049 (5)	0.002 (4)	0.007 (4)	0.014 (4)
C82	0.048 (5)	0.051 (5)	0.060 (5)	0.004 (4)	0.013 (4)	0.008 (4)
C83	0.066 (6)	0.053 (5)	0.068 (6)	0.011 (5)	-0.003 (5)	0.014 (5)
O4	0.062 (4)	0.039 (3)	0.048 (3)	0.012 (3)	0.002 (3)	-0.002 (2)
C4	0.066 (6)	0.066 (6)	0.045 (5)	0.024 (5)	-0.008 (4)	0.003 (4)
Geometric pa	rameters (Å, °)					
Ce1-08		2.430 (6)	01–	-C1	1.22	2 (2)
Ce1—O2		2.450 (6)	01–	-C1'	1.24	42 (15)

Ce1—O6	2.458 (5)	N1—C1	1.28 (3)
Ce1—O3	2.476 (7)	N1—C13	1.49 (2)
Ce1—O1	2.478 (6)	N1—C12	1.51 (3)
Ce1—O5	2.497 (6)	C1-C11	1.55 (3)
Ce1—O7	2.506 (6)	N1'—C1'	1.28 (2)
Ce1—O4	2.615 (6)	N1'—C13'	1.50 (2)
Mo3—S12	2.131 (2)	N1'—C12'	1.51 (2)
Mo3—S9	2.199 (3)	C1'—C11'	1.52 (2)
Mo3—S11	2.219 (2)	O2—C2	1.240 (10)
Mo3—S10	2.236 (2)	N2—C2	1.288 (11)
Mo3—Ag2	2.9487 (12)	N2—C23	1.491 (12)
Mo3—Ag3	2.9641 (11)	N2—C22	1.512 (12)
Mo1—S2	2.143 (2)	C2—C21	1.518 (12)
Mo1—S3	2.183 (3)	O3—C3	1.213 (11)
Mo1—S1	2.208 (2)	N3—C3	1.291 (12)
Mo1—S4	2.254 (3)	N3—C33	1.474 (11)
Mo1—Ag1	2.9579 (12)	N3—C32	1.518 (12)
$M_{01} = A_{02}^{i}$	2 9646 (11)	C3-C31	1 500 (12)
Mo1—Ag5	2.191 (2)	05 05	1.300(12)
Mo2 S6	2.181(2)	05—C5	1.243(13)
$M_0 2 = S7$	2.191(3)	N5	1.232(13)
M-2 S5	2.197(2)	N5	1.485(12)
Mo2—55	2.211(2)	N5	1.505 (13)
Mo2—Ag2	2.9290 (12)		1.511 (15)
Mo2—Agi	2.9343 (12)	06	1.225 (11)
Ag2—S7	2.483 (2)	N6	1.248 (11)
Ag2—S9	2.525 (3)	N6—C63	1.484 (10)
Ag2—S10	2.540 (3)	N6—C62	1.505 (11)
Ag2—S8	2.545 (3)	C6—C61	1.561 (13)
Ag1—S5	2.516 (3)	O7—C7	1.234 (11)
Ag1—S6	2.520 (2)	N7—C7	1.239 (13)
Ag1—S4	2.534 (3)	N7—C73	1.500 (12)
Ag1—S3	2.545 (3)	N7—C72	1.503 (12)
Ag3—S1 ⁱⁱ	2.533 (3)	C7—C71	1.557 (14)
Ag3—S11	2.543 (2)	O8—C8	1.239 (12)
Ag3—S10	2.551 (2)	N8—C8	1.291 (12)
Ag3—S4 ⁱⁱ	2.556 (2)	N8—C83	1.473 (13)
Ag3—Mo1 ⁱⁱ	2.9646 (11)	N8—C82	1.500 (12)
S4—Ag3 ⁱ	2.556 (2)	C8—C81	1.530 (13)
S1—Ag3 ⁱ	2.533 (3)	O4—C4	1.467 (12)
O8—Ce1—O2	124.7 (2)	S8—Mo2—S6	107.53 (10)
O8—Ce1—O6	73.1 (2)	S8—Mo2—S7	113.29 (9)
O2—Ce1—O6	75.0 (2)	S6—Mo2—S7	108.06 (10)
O8—Ce1—O3	75.1 (2)	S8—Mo2—S5	107.83 (10)
O2—Ce1—O3	139.8 (2)	S6—Mo2—S5	113.00 (9)
O6—Ce1—O3	143.4 (2)	S7—Mo2—S5	107.24 (10)
O8—Ce1—O1	139.9 (2)	Ag2—Mo2—Ag1	177.26 (3)
02—Ce1—O1	75.7 (2)	S7—Ag2—S9	120.29 (8)
	··· 、 、 /	0	

O6—Ce1—O1	145.6 (2)	S7—Ag2—S10	118.75 (8)
O3—Ce1—O1	70.1 (2)	S9—Ag2—S10	93.70 (8)
08—Ce1—O5	69.2 (2)	S7—Ag2—S8	93.32 (8)
O2—Ce1—O5	75.6 (2)	S9—Ag2—S8	122.38 (8)
O6—Ce1—O5	103.0 (2)	S10—Ag2—S8	110.11 (9)
O3—Ce1—O5	81.9 (2)	Mo2—Ag2—Mo3	171.36 (3)
O1—Ce1—O5	86.6 (2)	S5—Ag1—S6	93.59 (8)
O8—Ce1—O7	139.1 (2)	S5—Ag1—S4	110.62 (8)
O2—Ce1—O7	76.0 (2)	S6—Ag1—S4	120.53 (9)
O6—Ce1—O7	81.0 (2)	S5—Ag1—S3	125.48 (9)
O3—Ce1—O7	113.3 (2)	S6—Ag1—S3	115.81 (8)
O1—Ce1—O7	74.8 (2)	S4—Ag1—S3	93.18 (8)
O5—Ce1—O7	149.2 (2)	Mo2—Ag1—Mo1	174.07 (3)
O8—Ce1—O4	76.1 (2)	S1 ⁱⁱ —Ag3—S11	117.64 (8)
O2—Ce1—O4	142.9 (2)	S1 ⁱⁱ —Ag3—S10	127.35 (9)
O6—Ce1—O4	84.62 (19)	S11—Ag3—S10	93.57 (8)
O3—Ce1—O4	70.5 (2)	S1 ⁱⁱ —Ag3—S4 ⁱⁱ	93.65 (8)
01—Ce1—O4	109.1 (2)	S11—Ag3—S4 ⁱⁱ	124.63 (8)
O5—Ce1—O4	140.1 (2)	S10—Ag3—S4 ⁱⁱ	102.10 (8)
O7—Ce1—O4	70.3 (2)	Mo2—S7—Ag2	77.22 (7)
S12—Mo3—S9	107.79 (11)	Mo3—S11—Ag3	76.66 (7)
S12—Mo3—S11	106.54 (9)	Mo3—S10—Ag2	75.96 (8)
S9—Mo3—S11	108.80 (9)	Mo3—S10—Ag3	76.20(7)
S12—Mo3—S10	107.68 (10)	Ag2—S10—Ag3	105.48 (9)
S9—Mo3—S10	112.83 (9)	Mo2—S6—Ag1	76.70 (8)
S11—Mo3—S10	112.89 (9)	Mo2—S5—Ag1	76.44 (8)
Ag2—Mo3—Ag3	86.51 (4)	Mo1—S4—Ag1	76.06 (8)
S2—Mo1—S3	107.19 (10)	Mo1—S4—Ag3 ⁱ	75.79 (7)
S2—Mo1—S1	107.36 (10)	Ag1—S4—Ag3 ⁱ	101.22 (8)
S3—Mo1—S1	108.89 (11)	Mo1—S3—Ag1	77.02 (8)
S2—Mo1—S4	108.10 (9)	Mo2—S8—Ag2	76.15 (8)
S3—Mo1—S4	112.48 (9)	Mo3—S9—Ag2	76.90 (8)
S1—Mo1—S4	112.55 (10)	Mo1—S1—Ag3 ⁱ	77.08 (8)
Ag1—Mo1—Ag3 ⁱ	83.24 (3)		

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*.

Fig. 2

